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Abstract
We derive a local, gauge-invariant action for the SU(N) nonlinear σ -model
in 2 + 1 dimensions. In this setting, the model is defined in terms of a self-
interacting pseudo-vector field θµ, with values in the Lie algebra of the group
SU(N). Thanks to a non-trivially realized gauge invariance, the model has
the correct number of physical degrees of freedom: only one polarization of
θµ, like in the case of the familiar Yang–Mills theory in 2 + 1 dimensions.
Moreover, since θµ is a pseudo-vector, the physical content corresponds to
one massless pseudo-scalar field in the Lie algebra of SU(N), as in the
standard representation of the model. We show that the dynamics of the
physical polarization corresponds to that of the SU(N) nonlinear σ -model
in the standard representation, and also construct the corresponding BRST-
invariant gauge-fixed action.

PACS numbers: 11.10.Kk, 11.10.Lm, 11.10.−z

1. Introduction

The nonlinear σ -model [1] is a very important tool for the description of the effective, low-
energy dynamics of systems with a broken continuous (global) symmetry [2]. Many of its
interesting and distinctive features stem from the fact that the symmetry group is realized in
a nonlinear way, as this endows the theory with a rich structure of interactions. Indeed, it
has an infinite number of interaction vertices, when defined in terms of field variables which
are themselves group coordinates. Nonetheless, this holds true in spite of the model having
a ‘universality’: its properties are completely determined when the symmetry group and the
spacetime dimension are known.

Of course, the same nonlinearity is also responsible for the fact that, except for the (1+1)-
dimensional case, the theory becomes non-renormalizable from the point of view of the usual
loop expansion [2]. However, even in more than two spacetime dimensions, the model still has
a reasonable predictive power, if properly understood as an effective theory [3]. This approach
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has been successfully applied to chiral perturbation theory [4], as a convenient effective model
for QCD. Note, however, that in 2 + 1 dimensions, the nonlinear σ -model is renormalizable if
a large-N expansion is used [5], instead of the standard loopwise perturbation theory.

The non-linearity may usually be tackled by resorting to an auxiliary,‘Lagrange multiplier’
field, which enforces a constraint on the (otherwise free) field variables. The typical example
of this is, perhaps, the O(N) nonlinear σ -model, where an auxiliary field imposes a constant-
modulus constraint on an N-component scalar field �φ = (φ1, . . . , φN), which is a vector field
in internal space. An important by-product of this construction is that the auxiliary field is an
O(N) singlet, hence, the large-N expansion is easier to formulate after one ‘integrates out’ the
φ field, leaving an action for the Lagrange multiplier.

Indeed, the procedure of ‘linearizing’ an action, by the introduction of auxiliary fields,
and afterwards integrating the original fields out to obtain an effective theory for the auxiliary
fields, has frequently proved to be very useful. This is particularly true when the auxiliary
field has some convenient symmetry or transformation properties [6]. In particular, it allows
one to obtain an effective theory where the symmetry properties are inherited from those of
the Lagrange multiplier in the linearized theory.

In this paper, we introduce a gauge-invariant, non-trivially realized Abelian quantum
field theory model in 2 + 1 dimensions, which is derived by the procedure of integrating out
the original variables, in order to obtain an effective theory for the auxiliary field. Since
our starting point shall be a representation of the nonlinear σ -model where the Lagrange
multiplier has a local gauge symmetry, that feature will be preserved in the resulting action.
The realization of the Abelian gauge symmetry is non-trivial, because the commutator of
two gauge transformations is zero only on-shell, i.e., on the configurations that satisfy the
equations of motion. Equivalently, the commutator between two ‘true’ gauge transformations
yields a trivial, ‘equation of motion’ gauge transformation [7, 8].

The structure of this paper is as follows: in section 2 we derive the action for model,
showing that it is indeed defined by a gauge-invariant action. Then we consider the realization
and structure of the gauge and global symmetries in section 3, leaving for section 4 the quantum
treatment of the model. Section 5 contains our conclusions.

2. The model

We shall begin by reviewing the main features of the polynomial representation for the SU(N)

nonlinear σ -model in 2 + 1 dimensions, as presented in [9, 10]. This formulation may be
defined in terms of a gauge-invariant Euclidean action Sinv, which determines the dynamics of
two fields Lµ (vector) and θµ (pseudo-vector) in the Lie algebra of SU(N):

Sinv[L, θ ] =
∫

d3x Linv(L, θ) (1)

with

Linv(L, θ) = 1
2g2Lµ · Lµ + igθµ · F̃ µ(L) (2)

where g is a constant with the dimensions of a mass (it is in fact the exact analogue of fπ in
the (3 + 1)-dimensional case), and F̃ µ(L) denotes the dual of the non-Abelian field strength
tensor for the vector field Lµ, namely,

F̃ µ(L) = 1
2εµνλFνλ(L) Fµν(L) = ∂µLν − ∂νLµ + g

1
2 [Lµ,Lν ]. (3)

Lµ being an element in the Lie algebra, with the convention that Lµ = −L†
µ, it can be written

as

Lµ(x) = La
µ(x)λa λ†

a = −λa
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Tr(λaλb) = −δab [λa, λb] = fabcλc (4)

where fabc is real and completely antisymmetric. Group indices will be indistinctly written
as subscripts or superscripts; no meaning should be assigned to the difference. In (2), we also
used the notation: U · V ≡ UaVa, and (U × V )a = fabcUbVc for any two elements U,V in
the algebra. Also, both L and θ have the mass dimensions of g1/2.

The ‘inv’ subscript in the action has been introduced in order to emphasize the fact that it
is, indeed, invariant under the (local) gauge transformations:

δωLµ = 0 δωθµ = Dµω (5)

where the covariant derivative is compatible with the parallel transport defined by L, namely,

Dµω = ∂µω + g
1
2 [Lµ,ω] (6)

or in components:

(Dµω)a = ∂µωa + g
1
2 fabcL

b
µωc. (7)

It must be noted that this gauge symmetry is valid of-shell, namely, it holds true regardless
of whether the fields verify the equations of motion or not. Besides, equation (5) tells us that L
is a gauge-invariant object, and this implies that the commutator of two gauge transformations
vanishes:

[δη, δω] = 0. (8)

Here δω and δη denote the operators that perform a gauge transformation on a given functional
(eventually a function) of the fields. Namely, if I is a functional of L and θ ,

δωI [L, θ ] =
∫

d3x δωθa
µ(x)

δI [L, θ ]

δθa
µ(x)

(9)

where δωθa
µ is defined as in (5). This of course means that the gauge group is Abelian, in spite

of the non-Abelian looking transformation rule for θ .
Had we wanted to work with this representation, we should have considered fixing the

gauge as the next step. Rather than doing that, we shall move on to derive an ‘effective theory’
for θµ, an auxiliary field which transforms as a vector field in the adjoint representation. To
that end, we define the effective action Sinv[θ ] by the following expression:∫

[Dθ ] e−Sinv[θ ] =
∫

DθDL e−Sinv[L,θ ] (10)

where [Dθ ] denotes the integration measure for θ in the effective theory (the brackets denote
possible group factors). Of course, the integration over θµ is ill-defined, since the theory is
gauge invariant. There is, however, no obstruction to the integration of the L-field, since θµ

is, in that case, regarded as a background field. We shall, of course, have to deal with the
gauge-fixing for Sinv[θ ] afterwards.

The integral over Lµ in (10) is a Gaussian, and its evaluation yields the result:

Sinv[θ ] =
∫

d3x Linv(θ) Linv(θ) = 1

2
f̃ a

µGab
µν(θ)f̃ b

ν (11)

where f̃ is the dual of the Abelian field3 strength: f̃ a
µ ≡ εµνλ∂νθ

a
λ , and

Gab
µν = [M−1]ab

µν Mab
µν = δµνδ

ab + ig− 1
2 εµλνf

acbθc
λ. (12)

3 We adopt the convention that a lower case fµ refers to the dual of the Abelian field strength, while the upper case
one is reserved for the dual non-Abelian one.
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The fact that G is the inverse of M must be understood in the sense that the relations:

Gac
µλM

cb
λν = δµνδ

ab (13)

are valid. Fortunately, the explicit form of G is not required for most of our presentation.
Note, however, that one may easily obtain an approximate expression for it by performing an
expansion in powers of the (dimensionless) object θg− 1

2 . There arises also from the Gaussian
integral a factor which modifies the θ -field integration measure,

[Dθ ] = Dθ [det(M)]−
1
2 . (14)

A question that immediately presents itself at this point is what has happened to the
gauge invariance; indeed, the gauge invariance in the polynomial representation, equation (5),
involves Lµ in its definition, and Lµ is precisely the field that has been eliminated from the
action.

Of course, a standard Maxwell-like gauge transformation will not do, since, although f̃ µ

is invariant under the Abelian gauge transformations of the Maxwell theory, G, that depends
on θµ, is not. Indeed, looking for example at the explicit form of the action (11), with G
expanded up to terms of order θ 2

g
, we see that

Sinv[θ ] =
∫

d3x

[
1

2
f̃ µ(θ) · f̃ µ(θ) − i

2
g− 1

2 εµνλθµ · f̃ ν(θ) × f̃ λ(θ)

− 1

2g
(θµ · f̃ µθν · f̃ ν − θµ · f̃ νθµ · f̃ ν + f̃ µ · f̃ µθν · θν − f̃ µ · f̃ νθµ · θν)

]

(15)

where only the term in the first line is invariant under Abelian gauge transformations. In spite
of this, we do expect a gauge invariance to exist for Sinv[θ ], since we know there are two
unphysical components (for each value of a) in θµ, which do appear in the free propagator.
This propagator will of course be determined by the free action

S(0)
inv [θ ] =

∫
d3x

1

2
f̃ a

µ(θ)f̃ a
µ(θ) =

∫
d3x

1

4
f a

µν(θ)f a
µν(θ) (16)

after adding a gauge-fixing term.
It is then reasonable to assume that the gauge transformations for θ should be of the form

δωθµ = ∂µω + g
1
2 [Lµ(θ), ω] (17)

where Lµ(θ) is a dependent field which plays the role of a connection, and should of course
be defined in terms of θ .

A possible hint to find the explicit form of Lµ(θ) comes from the fact that performing
the Gaussian integration is tantamount to ‘replacing the integrated field by their values at the
extreme of the exponent’. Denoting by L̂µ(θ) the expression that maximizes the exponent,
we see that it is given by

L̂a
µ = −ig−1Gab

µν(θ)f̃ b
ν. (18)

Thus we shall adopt the ansatz Lµ(θ) ≡ L̂µ(θ), the consistency of which we will verify now:
to see whether the transformation (17) is a (gauge) symmetry of the action (11) or not, we
first evaluate the first variation of Sinv[θ ] under a general, not necessarily gauge, infinitesimal
variation of θ .

After some elementary algebra, we obtain

δSinv[θ ] =
∫

d3x δθa
µ

{
εµνλ∂ν

[
Gab

λρ(θ)f̃ b
ρ(θ)

] − i

2
g− 1

2 εµνλfabcG
bd
να(θ)f̃ α

dGce
λβ(θ)f̃ e

β

}

(19)
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where we used the symmetry property Gab
µν = Gba

νµ, and the relation

δGab
µν = −ig− 1

2 Gac
µλ(θ)ελρσf cdeδθd

ρ Geb
σν(θ) (20)

both of them consequences of the fact that G = M−1. Recalling the definition of Lµ(θ), we
may also write (19) as

δSinv[θ ] = ig
∫

d3x δθa
µF̃ a

µ(L(θ)) (21)

where

F̃ a
µ(L(θ)) = 1

2εµνλF
a
νλ(L(θ))

F a
µν(L(θ)) = ∂µLa

ν(θ) − ∂νL
a
µ(θ) + g

1
2 f abcLb

µ(θ)Lc
ν(θ).

(22)

Using now the explicit form for δθµ that corresponds to a gauge variation, equation (17), we
see that

δSinv[θ ] = −ig
∫

d3x ωa(x)[DµF̃µ]a(L) = 0 (23)

as a consequence of the Bianchi identity, which is of course true regardless of L being an
independent field or not. We shall henceforth omit writing the dependence of L on θ explicitly,
since L shall always be assumed to be a dependent field. A small technical point (absent in
the real time formulation) is that relation (18) includes complex factors: an i multiplying G,
but G itself has both real and imaginary parts. This should be hardly surprising, since the
action itself is not purely real, as it happens with Euclidean actions including Chern–Simons
terms (and with other topological objects in different number of dimensions). Thus relation
(18), to have non-trivial solutions, requires the continuation of the fields to complex values.
Of course, the gauge-invariant action in Minkowski spacetime, SM

inv, is real,

SM
inv =

∫
d3x

1

2
f̃ µ

a Gab
µν(θ)f̃ ν

b (24)

where f̃
µ
a = εµνλ∂νθ

a
λ and Gab

µν(θ) is determined by the equations

Gac
µρ(θ)M

ρν

cb (θ) = δν
µδa

b M
µν

ab = gµνδab + g− 1
2 εµλνf acbθc

λ. (25)

Thus we have verified the consistency of the definition of the covariant derivative with
the gauge invariance of the action. Note, however, that there is an important difference with
the polynomial formulation, in that the gauge transformations for θ involve L, which is itself a
function on θ . Thus L will, in general, change under a gauge transformation in this formulation.
In particular, this implies that finite gauge transformations will be different from infinitesimal
ones. This is in fact a consequence of the algebra of gauge transformations being open, as will
be discussed in the next section.

Also, expression (21) tells us that the classical equations of motion deriving from Sinv[θ ]
are

Fµν(L) = 0 (26)

i.e., the Maurer–Cartan equations for L, which obviously have a gauge-invariant set of
solutions.

Regarding the integration measure [Dθ ], it is straightforward to verify that the gauge
variation of [Dθ ] is zero. We conclude that the action (11) is indeed gauge invariant. The
gauge invariance is not of the Yang–Mills type, but rather involves as a connection a vector
field Lµ which is a composite field, defined in terms of θµ and its derivatives. As we shall see
in the next section, the gauge group is indeed Abelian, but the algebra of gauge transformations
is not closed off-shell.
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It may seem surprising at first sight that the only ‘content’ of the classical equations of
motion is that the Maurer–Cartan equations for a field are satisfied, since we still need the
dynamics for the true degrees of freedom. Of course, such a dynamics is also present in this
description: L is a pure gauge field, i.e., Lµ = U †∂µU with U(x) ∈ SU(N), and besides (see
(42) below) ∂µ · Lµ = 0. These two equations are equivalent to the classical equations of
motion for the nonlinear σ -model.

3. Symmetries

The actual form of the gauge transformations, as acting on the field θµ, has been obtained
by the procedure of borrowing the (known) form of the corresponding transformations from
the polynomial version, and afterwards replacing the field Lµ by its value at the extreme
(a function of θ ). This yields, for a transformation parametrized by the function ω(x), the
variation:

δωθµ(x) = DL
µω(x) (27)

where

DL
µω = ∂µω + g

1
2 [Lµ,ω] (28)

with

La
µ = −ig−1Gab

µν(θ)f̃ b
ν(θ). (29)

In spite of the presence of a covariant derivative, the transformations do not correspond to
a non-Abelian Yang–Mills theory. Indeed, it should be noted that the transformations (27)
involve the covariant derivative, defined in terms of a composite field which plays the role of
a connection. However, they are not strictly Abelian type either, since the transformation law
for θ does not correspond to that case.

We shall now see that what happens is that the transformations are, indeed, Abelian, but
only on-shell, i.e., on the equations of motion. To be specific, consider the commutator of two
gauge transformations, corresponding to the gauge functions ω and η. We find that the result
may be written, after some algebraic manipulations, as follows:

[δη, δω]θa
µ = �ab

µν(θ)
δSinv[θ ]

δθb
ν

(30)

where we introduced the object:

�ab
µν(θ) = − 1

g
ηhωc(f aecf dbh − f aehf dbc)Ged

µν(θ). (31)

It is important to realize that �ab
µν is antisymmetric, namely,

�ab
µν = −�ba

νµ (32)

since this means that the right-hand side of (30) is a trivial gauge transformation [8]. Indeed,
for a given action S[θ ], a transformation of the kind

δθa
µ = �ab

µν(θ)
δS[θ ]

δθb
ν

(33)

with an arbitrary antisymmetric function �ab
µν = −�ba

νµ, is a symmetry of S[θ ], regardless
of the form of S[θ ]. It can also be shown [8], that the commutator between a non-trivial
gauge transformation and a trivial one yields a trivial gauge transformation. Thus, we see that
the physically relevant gauge group is Abelian, and isomorphic to U(1)(N

2−1) (for SU(N)),
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although realized in a non-trivial way, since the ‘trivial’ part of the gauge transformations
cannot be easily eliminated within the present formulation of the model.

A related property is that the composite field Lµ, which is gauge invariant in the polynomial
transformation, is now also gauge invariant but only onshell:

δωLa
µ = −ig− 1

2 Gab
µν(θ)f bcd f̃ c

ν(L)ωd (34)

i.e., it vanishes when F̃ µ(L) = 0.
The question that immediately presents itself is what are the conditions a gauge-invariant

functional must verify. This is of course important, since gauge-invariant functionals are
naturally associated with physical observables. Besides, in the functional integral approach
to a quantum gauge field theory, the condition a gauge-invariant functional must satisfy is an
important part of the formulation.

So, assuming I [θ ] to be a gauge-invariant functional of θ , it must verify the condition:

δωI [θ ] = 0 (35)

where

δω =
∫

d3x δωθa
µ(x)

δ

δθa
µ(x)

. (36)

However, if such a gauge-invariant functional exists, one immediately gets a consistency
condition by applying two successive gauge transformations on I and subtracting them,namely:

δωI [θ ] = 0 ⇒ [δη, δω]I [θ ] = 0. (37)

On the other hand, we may of course evaluate the commutator of two gauge transformations;
after some algebra, we find

[δη, δω] =
∫

d3x �ab
µν(θ)

δSinv

δθa
µ(x)

δ

δθb
ν (x)

. (38)

Thus, for non-trivial gauge-invariant functional I to exist, since � depends on the arbitrary
functions η and ω, we have to impose the additional condition:

Fµν(L) = 0. (39)

This is nothing new from the classical point of view, but it makes a difference for the quantum
theory, where all the configurations matter, and not just the extrema of the action. This seems
to lead us to the inclusion of (39) as a constraint, which is not what we want. Fortunately,
there are ways out of this [8], that does not require the introduction of extra constraints (which
might even reduce the number of degrees of freedom).

Regarding the global symmetries, we know that Lµ is a conserved current, associated with
a global symmetry of the nonlinear σ -model. To see that Lµ is conserved in this formalism is
a bit tricky. One possible way to prove that is to use the property that the composite field Lµ

as given by (29) may also be written, after some algebra, as

Lµ = −ig−1εµνλDνθλ (40)

where we used the property:

Gab
µν(θ) = δab

µν − ig− 1
2 εµλσ f acdθc

λG
db
σν(θ). (41)

Then it follows that

∂µLµ = DµLµ = −ig−1εµνλDµDνθλ = −ig− 1
2 [F̃ µ(L), θµ] (42)

which vanishes on-shell, and implies the conservation of Lµ. The conserved charge is of
course given by the space integral of L0. It is instructive to consider the particular case of a
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point-like static charge of colour a and strength q located at x = x0. This corresponds to a
charge density

La
0(x) = −iqδ(x − x0) Lj (x) = 0. (43)

Inserting this into relation (29) yields

f̃ a
µ = qδµ0δ(x − x0) (44)

i.e., it corresponds to a point-like magnetic flux on the same point. The conserved charge is
then equal to the total magnetic flux (for that colour).

4. Quantum theory

We shall consider here the quantum theory corresponding to this gauge-invariant model, from
the path integral approach. The natural object to consider is then of course the generating
functional for θ -field correlation functions. The ill-defined (gauge invariant) partition function
shall be given by the expression:

Zinv[J ] =
∫

[Dθ ] exp

{
−Sinv[θ ] +

∫
d3x Jµ · θµ

}
. (45)

The generating functional (45), being gauge invariant, requires the introduction of a
gauge-fixing term and its companion ghost action to be well defined. However, a standard
Faddeev–Popov approach to the definition of the gauge-fixed action will not do, since the
resulting action is neither BRST invariant, nor does the transformation becomes nilpotent.
The difficulty lies, of course, in the fact that the algebra of the gauge transformations is
‘open’, namely, it closes only when the equations of motion are satisfied. However, a modified
action, which generally involves quartic ghost terms may be constructed, such that the action
is invariant under an extended BRST transformation [7, 8]. By an application of such method
to this case, we obtain the gauge-fixed action S:

S[θµ; b, c̄, c] = Sinv[θ ] + Sgf [b, θ ] + Sgh[c̄, c; θ ] (46)

where we shall adopt the covariant gauge-fixing term:

Sgf [θ ] =
∫

d3x

(
− 1

2λ
b2 + b · ∂µθµ

)
(47)

and the corresponding ghost action becomes

Sgh[c̄, c; θ ] =
∫

d3x

[
∂µc̄ · DL

µc +
1

2g
(∂µc̄ × c)aGab

µν(θ)(∂ν c̄ × c)b
]

. (48)

The existence of a quartic term in the ghosts makes it evident that the BRST transformations
are not of the standard form. Indeed, we find that the precise form for the transformations is

δθa
µ = ξ(Dµc)a + ξ

i

g
f abeGbd

µν(∂ν c̄ × c)dce

δc = 0 δc̄ = iξb δb = 0.

(49)

They leave the action S invariant, and the transformation is besides nilpotent.
The generating functional for the gauge-fixed action is then defined as follows:

Z[J ; j, η̄, η] =
∫

[Dθ ]DbDc̄Dc

× exp

{
−S[θ; b, c̄, c] +

∫
d3x (Jµ · θµ + j · b + η̄ · c + c̄ · η)

}
. (50)
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It should be noted that, in all the above equations, the covariant derivative is defined in
terms of the dependent field L, which is a function of θ .

This may be thought of as the main result of this paper, namely, there exists a gauge-
invariant description for the nonlinear σ -model in 2 + 1 dimensions; this description is built
in terms of θ , a pseudo-vector field in the algebra of the group. The gauge algebra is however
open, which makes the BRST quantization less immediate than for the Yang–Mills case
(although the algebra is Abelian on-shell). The resulting gauge-fixed action contains terms
quartic in the ghosts, and is invariant under a global BRST symmetry. This BRST symmetry
may be applied to, for example, the derivation of Ward identities that will restrict the form of
the counterterms.

Regarding the quantum corrections, it should be noted that there is another (equivalent)
possibility of tackling the problem of open gauge algebras, through the introduction of auxiliary
field. Their function is to render the on-shell symmetry into an off-shell one, where the
Faddeev–Popov trick may be applied. The upshot of this procedure here, leads one to the
‘polynomial formulation’ Lagrangian of (2), whose renormalization properties have been
considered in [9].

5. Conclusions

We have shown that the SU(N) nonlinear σ -model in 2 + 1 dimensions may indeed be
described by a gauge-invariant action Sinv[θ ], for a single pseudo-vector field θ . This action
has a gauge invariance which involves a composite field L (a function of θ ) that plays a
role similar to a connection. This, however, is so only when one considers infinitesimal
gauge transformations. Finite gauge transformations, and the composition of two gauge
transformations show that the gauge algebra is open. The resulting classical theory shows
no difference with the standard formulation of the nonlinear σ -model, since the classical
trajectories are the only important part of the action, and there the algebra closes.

For the quantum theory, however, the situation is more complicated, as the BRST
quantization requires the introduction of a term which is quartic in the ghosts. However,
the corresponding global BRST symmetry exists, and may indeed be used as a starting point
in the construction of the quantum effective action. We also note that this open algebra
formulation is also equivalent to the polynomial formulation, where the algebra is closed and
Abelian. However, off-shell closing of the algebra is achieved in the latter at the price of
increasing the number of (unphysical) variables: one has the fields Lµ and θµ. That the
number of physical variables is the same in both cases can be seen as follows: as shown in
[11], the canonical theory determined by (1) has two first-class constraints and six second-
class constraints, so that the number of physical degrees of freedom is 6 − 2 − 1

2 × 6 = 1
(for each colour). In the formulation considered here there are three fields to begin with,
while there is also one physical degree of freedom for each colour. This can be seen without
using the canonical theory: one can, for example, invoke the ‘quartet mechanism’ of [12],
which works here in the same way as in the Yang–Mills case, so that two unphysical gauge
field components (longitudinal and temporal photons) are eliminated. It is important to stress
that the quartet mechanism depends on the BRST and ghost algebra on the asymptotic states,
which is the same as for the Yang–Mills case. Here the fields are on-shell, and the algebra of
gauge transformations becomes Abelian. Although we do not dwell here with the canonical
formulation, it is evident that there will be two first-class constraints: one primary, and coming
from the definition of the canonical momentum conjugate to θ0. The other is secondary, and
has the form of a ‘Gauss law’ condition. Hence there is of course 1 (=3 − 2) physical degree
of freedom, as it should be.
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